Snowflake geometry in CAT (0) groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Snowflake Geometry in Cat(0) Groups

We construct CAT(0) groups containing subgroups whose Dehn functions are given by x , for a dense set of numbers s ∈ [2,∞). This significantly expands the known geometric behavior of subgroups of CAT(0) groups.

متن کامل

Asymptotically CAT(0) Groups

We develop a general theory for asymptotically CAT(0) groups; these are groups acting geometrically on a geodesic space, all of whose asymptotic cones are CAT(0).

متن کامل

Geodesic flow for CAT.0/–groups

In Bartels–Lück [1] we introduced the concept of transfer reducible groups with respect to a family of subgroups. This definition is somewhat technical and recalled as Definition 0.4 below. We showed that groups that are transfer reducible over the family of virtually cyclic subgroups satisfy the Farrell–Jones Conjecture with coefficients in an additive category. For further explanations about ...

متن کامل

Isometry Groups of Cat(0) Cube Complexes

Given a CAT(0) cube complex X, we show that if Aut(X) 6= Isom(X) then there exists a full subcomplex of X which decomposes as a product with R. As applications, we prove that ifX is δ-hyperbolic, cocompact and 1-ended, then Aut(X) = Isom(X) unless X is quasi-isometric to H, and extend the rank-rigidity result of Caprace–Sageev to any lattice Γ ≤ Isom(X).

متن کامل

Groups acting on CAT(0) cube complexes

We show that groups satisfying Kazhdan’s property (T) have no unbounded actions on nite dimensional CAT(0) cube complexes, and deduce that there is a locally CAT(−1) Riemannian manifold which is not homotopy equivalent to any nite dimensional, locally CAT(0) cube complex. AMS Classi cation numbers Primary: 20F32 Secondary: 20E42, 20G20

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Topology

سال: 2017

ISSN: 1753-8416,1753-8424

DOI: 10.1112/topo.12028